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Manual Curation vs. Artificial Intelligence: Can Automated Variant 
Evidence Retrieval Replace Human Judgment?

Stanford University compares data quality from their Automatic VAriant evidence DAtabase 
(AVADA) to the Human Gene Mutation Database (HGMD)

Variant Annotation in Clinical Genomics 

Next Generation Sequencing (NGS) methodologies such 
as Whole Genome Sequencing (WGS) and Whole Exome 
Sequencing (WES) give us the ability to search for clini- 
cally significant variations across the human genome, 
providing detailed genetic information that influences 
patient diagnosis and treatment. NGS applications greatly 
expand the number of novel genetic variants — changes 
in DNA sequence not previously reviewed by the medical 
community. Earlier approaches to genetic testing assayed 
established variants in specific genes. These targeted  
variants are considered established because they have 
been reviewed extensively by the medical community and 
the clinical relevance is evident prior to testing (1). The vast 
increase in genetic data from NGS poses new challenges 
as the process of annotating and understanding the clinical 
relevance of genetic information is time-consuming and 
requires the expertise of highly trained individuals (2,3). 
The clinical advantages of data produced through NGS 
may not be leveraged to its full extent due to the rate-
limiting step of researching and assessing genetic variants.

Variant classification is an essential step in the genetic testing  
workflow and refers to assigning clinical significance to the 
observed DNA variations in patient samples. This process is 
complex, time-consuming, and challenging, requiring expert 
knowledge and experience. Data sources that provide  
information on variants are numerous, heterogeneous, 
quickly evolving, and sometimes conflicting. Because of 
this, differences in variant classifications can exist between 
laboratories; these discrepancies have the potential to 
impact clinical decision making (4).

The American College of Medical Genetics and Genomics 
(ACMG) and the Association for Molecular Pathology 
(AMP) published guidelines in 2015 to standardize variant 
classification across clinical testing labs. These guidelines 
are considered the gold standard for the interpretation of 
sequence variants (5). According to ACMG guidelines the 
retrieval of variant evidence from the literature should be 
combined with the evaluation of the validity and strength 
of available evidence to reach a final pathogenicity  
categorization for the clinical significance of genetic data.
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Narrowing Down the Data Retrieved From the Available Sources

The retrieval of variant evidence from various sources  
can be daunting when thousands of variants in  
hundreds of genes need review. Considering that a 
typical singleton patient exome contains 200–500 
rare variants, variant classification alone can take 
up to a month per patient if performed manually (6). 
This is because each of the detected variants requires  
independent evaluation, giving scientists the difficult 
task of determining which variants have a functional 
impact on the protein and a clinical impact. Filtering 
and prioritizing genetic variants before considering 
literature evidence to reduce the variant list to those that 
need further attention is one of the most challenging 
tasks in clinical genomics.

Variant scientists evaluate different types of variant  
evidence to begin prioritizing a list of variants for  
literature review. They review allele frequencies from 
population data for healthy individuals, computational 
and predictive data, and reports from other labs in  
public databases such as ClinVar to begin narrowing  
down the list. This job is time-consuming and almost 
impossible to perform manually, considering a 
sequenced human exome can contain more than 
20,000 variants that must be checked across a  
diversity of sources and databases.

Scientific literature is one of the most important sources 
of empirical evidence to help a scientist determine 
whether a variant is clinically relevant, but it is also the 
most challenging and the most time-consuming source 
to evaluate. After initial filtering of the variant data,  
variant scientists may still be left with a large list of 
variants that require comprehensive literature review. 
Simply identifying the relevant literature evidence for 
a variant can be a tedious process. Scientists must 
search for literature across multiple platforms, using 
variant nomenclature across multiple transcripts, and 
sometimes research non-standard or historical naming 
schemes for variants. The time and effort put into the  
literature search can be substantial before taking  
into account the time required to read and analyze 
the data within the publications found. Often, scientific 
publications report conflicting data and interpretations 
for a particular variant and the variant scientist must 
review not only the content, but the validity of the study.
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Machine Learning to Identify Relevant Evidence

The Automatic VAriant evidence DAtabase (AVADA), 
is a modern, advanced machine learning tool that 
was developed to accelerate the process of retrieving 
variant evidence from the literature. AVADA automates 
identification of variant-level evidence from PubMed 
indexed literature and converts the data to genomic 
coordinates. AVADA was also developed with the aim 
of improving the quality and precision of the extracted 
data since the 26% error rate in associating a variant 
with the correct gene with previously available crowd-
sourcing and artificial intelligence (AI) applications 
was unsatisfactory (7).

To investigate the clinical utility of the automatically 
retrieved data and to show the amount of valuable  
evidence, AVADA evidence was compared with 
the gold-standard curated Human Gene Mutation 
Database (HGMD) and the ClinVar database of 
lab observed variants. From the AVADA database 
that contained 61,116 articles, data for 203,536  
variants was automatically retrieved (GRCh37/hg19  

chromosome, position, reference allele, and alternative 
allele) (Figure 1a). Of the variants retrieved by AVADA, 
85,888 coincided with disease-causing variants in 
HGMD, corresponding to 61% of disease-causing  
variants in HGMD (Figure 1b). AVADA contained 
26,033 (55%) of all likely/pathogenic variants listed in 
the ClinVar (Figure 1c). It outperformed other automated  
text processing methods such as tmVar (8), which 
retrieved only 14% disease-causing HGMD variants 
and only 31% of likely/pathogenic variants in ClinVar.

Comparing the data between the three, AVADA 
retrieved 62,180 variants known to be disease-causing 
in HGMD but that have not been reported in ClinVar. 
Only 2,325 variants retrieved in AVADA are reported 
in ClinVar as likely/pathogenic but were not listed 
in the HGMD. Of the variants extracted by AVADA, 
115,323 (56%) are neither present in the HGMD nor in 
the ClinVar (Figure 1d), so are of uncertain quality and 
clinical relevance.

Figure 1. A) 203,536 total variants were automatically extracted by AVADA; B) 61% of variants reported as disease-causing in the expert-curated 
HGMD were found by AVADA; C) 55% of variants reported as likely/pathogenic in the ClinVar were also found in AVADA; D) 56% of variants 
retrieved by ADAVA were neither in HGMD nor in ClinVar. These variants are of questionable quality and clinical utility.
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Automatization – Quantity vs. Quantity?

There is no doubt that automatic data collection using 
machine learning and artificial intelligence can aid 
in variant evidence retrieval. Using these systems, 
we will be able to automatically retrieve data for 
hundreds of thousand variants from tens of thousands 
of downloaded and parsed publications. From a 
total of 61,116 articles that made it into the final 
AVADA database, 203,536 distinct variants in 5827 
genes were automatically retrieved (9). Comparing 
the data between the AVADA and HGMD that  
does not overlap, AVADA had twice as many unique  
automatically extracted variants as HGMD had 
unique expert-exacted variants (118,000 vs. 56,000)  
(Figure 2).

However, we must not forget the presence of false-
positives, such as from indirect gene-variant-article  
references from tables, incompletely described  
variants or variants lacking Human Genome Variation 
Society (HGVS) nomenclature, imprecise chromosome  
positions, alternative variant nomenclature (ex.  
historical names including for genes), and alternative  
transcripts resulting in different protein positions  
corresponding to same DNA variant, among other 
variability in variant descriptions that often exist 
in the literature. These are hard for automated text  
mining approaches to parse and translate accurately, 
so data collection and variant classification requires 
additional scrutiny and caution. Assessing the validity 

Figure 2. Manual inspection of randomly selected AVADA variants showed lower quality and comprehensiveness compared to expert-curated,  
high-quality HGMD data even though twice as much data was automatically extracted.

56K
HGMD

only

118K
AVADA

only

High Quality

Low Quality

Low ComprehensivenessHigh Comprehensiveness



HGMD’s curated genetics content vs. text-mined content  5

and weight of individual papers and deciding on a 
final classification on the potentially conflicting sources 
is a challenging task. Some of the existing discrepancies 
can only be resolved manually by critically assessing 
and reviewing supplementary materials in the articles 
or by direct contact with the authors.

To assess the quality of automatically retrieved data, 
200 AVADA variants were randomly selected and 
manually reviewed to assess quality (9). It was found 
that the majority were incorrectly extracted. This means 
that when using automatically text-mined content, 
the associated literature reference provided for a  
variant will be irrelevant about 4 in 10 times, yielding 
false-positive results. Thus, even though large numbers 
of potential variants can be automatically extracted 
from the literature, there is a data quality issue beyond 
their clinical relevance (Figure 2). Because of this, 
the AVADA publication website warns users of these  
significant quality and incompleteness concerns.

Due to many existing uncertainties and the inability  
of known AI systems to address them — including  
AVADA — , expert curation by variant scientists is  
irreplaceable in the field of clinical genomics.

In an effort to minimize false-positive variant mentions 
as much as possible, AVADA scoped its processing to 
abstracts and full-text papers they first auto-classified as 
about hereditary disease. Even so, the resulting estimated  
73% recall and 49.5% precision of relevant articles 
indicates the challenges of automatically accurately 
identifying relevant articles beyond extracting mutation  
references. AVADA recovered nearly 60% of  
disease-causing HGMD variants leaving over 40% 
of disease-associated mutations undetected. This 
indicates that modern text extraction approaches  
including AVADA are not suitable as the sole source of 
literature identification for clinical purposes.
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HGMD Data Quality

HGMD combines biomedical informatics and human 
search procedures for variant data curation to provide 
high-quality variant references. HGMD is constantly 
updated by a team of expert variant scientists. They 
screen peer-reviewed biomedical literature on a daily 
basis via manual inspection of scientific journals to  
classify variants as disease-causing or possibly  
disease-causing (for Mendelian conditions), or as 
disease-associated (for multifactorial diseases). 

To retrieve genetic variants from the literature, it is  
important to account for differing nomenclature across 
gene transcripts. HGMD catalogues variants across 
multiple genome builds and transcripts, providing  
reliable variant data. To identify which variant description  
maps to which mentioned gene in the article, AVADA 
first forms gene–variant candidate mappings between 
each variant nomenclature description and each  
mentioned gene if the variant matches at least one 
RefSeq transcript of the gene (9). However, transcript  
identifiers are sometimes omitted from the papers and 
differing nomenclature can exist across transcripts  
making the task difficult for AI systems. 

HGMD is the only database that pursues a policy of 
continuous curation and reclassification, not relying 
solely on the original submitter updating their submission.  
Variant reclassification continually takes place in 
HGMD, giving high-quality data to the laboratory 
scientists who use it – making sure that they do not 
miss pivotal studies that may change the assessment of 
pathogenicity for a variant. 

HGMD offers the most comprehensive database of 
articles supporting the clinical significance of hereditary  
disease mutations. The value of HGMD is that its  
associated literature evidence is essential for the variant  
classification, and users can trust and rely on the 
information it provides. AI systems for automatic data 
retrieval should be considered an aid in variant retrieval 
but are far from sufficient. HGMD also includes variants  
identified by text mining approaches, but all such 
variants are validated for their clinical significance by 
HGMD expert curators.

Conclusion

Clinical genomics has high competency and quality  
demands because the final interpretative results will 
only be as good as the evidence used. AVADA and 
other AI tools are meant to identify relevant information  
for variant scientists to evaluate and are helpful. 
However, if the scientist solely relies on automated text 
mining approaches such as AVADA to identify relevant 
literature, critical evidence will often be missed. With a 
significant percentage of undetected disease-associated  
mutations and false-positive article associations,  
modern text mining approaches cannot compete with 
HGMD’s data quality and expert curation in terms of 
the accuracy and completeness of the clinical literature 
data.
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