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Functional metagenomics 
with ease of use and 
superior performance
Microbial communities contribute more than half of all the cells our bod-

ies are composed of. And not surprisingly, the taxonomic and genetic 

makeup of microbiomes is closely linked to the health of humans, ani-

mals and plants.

Yet especially the functional genetic composition of microbiomes is 

hard to establish and current metagenomics tools struggle with correctly 

predicting functional composition or changes in function between micro-

biome samples [Lindgreen et al. 2015]. 

What if you could access tools to de novo assemble metagenome data, 

reliably predict functional elements, and identify statistically significant 

changes in function between samples? And what if these tools were 

fully integrated into the industry standard for scientist-friendly NGS data 

analysis, and came along with a toolbox that has been optimized for 

microbiologists?
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A superior solution for 
microbial genomics
CLC Genomics Workbench, CLC Microbial Genomics 

Module and the MetaGeneMark plugin deliver superior 

performance, a fully integrated user experience and come 

bundled at a competitive price. 

Functional metagenomics 
performance benchmark
Accuracy of results

Detecting gene function in microbial communities based on 

metagenomic data is hard. Correctly measuring changes 

in the functional makeup between different metagenome 

samples is even harder.

Lindgreen et al. showed that most of the benchmarked open 

source tools failed to correctly predict such changes at levels 

that are statistically significant.

With our solution for microbial genomics you can more 

accurately detect and quantify functional elements in a 

sample. And the included statistical tools allow you to con-

fidently measure statistically significant changes in function 

between samples. 

Multi-sample comparison is used to detect functional 

changes between samples and to identify samples with 

similar or diverging functional genomic elements. Data can 

be grouped and analyzed in the context of your sample-

metadata. As shown in Figure 2, our tools were able to 

Figure 1. Assigning and tracking gene function in metagenomes with con-
fidence.

Lindgreen et al. published a comprehensive, independent evaluation of 14 
different whole metagenome analysis toolkits in Nature Scientific Reports in 
January 2016. We here compare our solution to the sole five toolkits out of 
the fourteen that allow functional metagenome analysis using the test data 
published by Lindgreen et al. Statistical comparison (Edge test performed 
in CLC Genomics Workbench) of pairwise differential abundance of the 
individual functional elements predicted in the two test communities detects a 
statistically significant difference for all of the three functional elements that 
were analyzed in the paper: photosynthesis, nitrogen fixation and pathoge-
nesis (all p-values < 0.01). Fold-changes predicted using our tools capture the 
expected overall pattern of functional changes and estimate the actual fold-
change with higher precision than any other tool in all three functional roles.

* indicates tools that consistently predicted changes correctly with statistically 
significance.

Figure 2. Functional 
comparison across 
microbiome sam-
ples.

Evaluation of an 
algorithm’s capa-
bilities in detecting 
functional changes 
in metagenomes 
is notoriously 
hard because 
the ground truth 
is unknown and 
there exist no gold-
standard datasets. 
To overcome 
these difficulties, 
Stinus Lindgreen 
et al. created six 
datasets from two 
synthetic microbial 
communities for his 
benchmarks: three 
(A1, A2 and A3) 
from the A com-
munity and three 
from the B com-

munity. To control the functional content, he created the two communities, 
A and B, with a selected set of species with known functional capabilities: 
Cyanobacteria (photosynthesis), Bradyrhizobium (nitrogen fixation) and 
Rhizobium (nitrogen fixation) were more abundant in community A, while a 
set of known pathogens where more abundant in community B.
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 Photosynthesis Nitrogen fixation Pathogenesis 

Actual 1.58 2.32 -1.87

QIAGEN 1.51 0.93 -2.63

EBI 1.04 0.67 -0.99

LMAT 0.09 0.09 -0.13

MEGAN -0.10  -0.57

MG-RAST 1.50 0.66 -0.14

QIIMEPiCRUSt 0.49 0.01 -0.18
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reliably separate samples from the two different communi-

ties based on the relative abundance of their predicted 

functional content.

Quality of metagenome assembly
Our accurate assignment of gene function depends on a 

novel metagenome assembler producing higher quality 

assemblies compared to leading alternatives. Table 1 illus-

trates how our metagenome assembler compares favorably 

when it comes to misassemblies, InDels, mismatch errors, 

and other quality metrics.

Run time and compute resource efficiency
Run time and compute resource requirements are important 

when sample volume is high.

We have benchmarked the metagenome assembler includ-

ed in our microbial genomics solution against leading 

metagenome assemblers using a dataset by Shakya et 

al. 2013. Shorter run time and greater compute resource 

efficiency was consistently demonstrated compared to other 

leading assemblers.

Increase walk away time
To increase walk away time, users can use the Workflow 

feature in CLC Genomics Workbench to combine the analy-

sis steps 2 through 7 listed below into a preconfigured one-

click workflow. Workflows are capable of batch processing 

many samples increasing walk-away time.

Analysis steps in functional metagenomics workflow:

1. Import of multiple whole metagenome sample read data-

sets and association of metadata to each sample.

2. QC and trimming of whole metagenome reads.

3. De novo assembly of each sample read dataset into 

high-quality contigs using the new De Novo Assemble 

Metagenome tool.

4. Locate coding sequences (CDS) in the resulting contigs 

using the third-party MetaGeneMark genefinder plugin 

for the CLC workbenches.

Figure 3. Best in class metagenome assembly.

Accelerated algorithms result in metagenome assembly that outcompetes 
leading alternatives in run time and compute resource consumption. *Note 
that MegaHit is able to scale its memory consumption down by sacrificing 
run time.
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Table 1. Quality of metagenome assembly.

The QIAGEN metagenome assembler delivers superior assembly quality resulting in more accurate annotation of functional genetic content. A dataset pub-
lished by Shakya et al. 2013 was used for this benchmark. The actual number for “Total length” and “Total length (>1kb)” should be close to 209,845,413 
bases. 

5. Annotate CDSs with Gene Ontology (GO) terms and 

Pfam protein families or Best BLAST Hits using one of 

the two new tools, Annotate CDS with Pfam or Annotate 

CDS with Best BLAST Hit, respectively.

6. Map the input reads back to the annotated contigs using 

the built-in Map Reads to Reference tool in the CLC 

workbenches.

7. Build a functional abundance profile of each sample 

using the Build Functional Profile tool

8. Merge the functional abundance profiles for all samples 

into one profile using the Merge Functional Profile tool.

9. Visualize the individual and merged functional abun-

dance profiles, perform filtering based on abundance, 

and apply the different options for showing the abun-

dance profiles in the context of metadata.

10. Perform hierarchical clustering and statistical analysis 

based on the relative abundance of functional elements 

in the samples.
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