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Conclusions

Background

Antimicrobial resistance in M. tuberculosis is predominantly 
caused by mutations that interrupt drug–target interaction 
rather than by uptake of mobile elements that carry resistance 
genes.

Methods

The tools of  QIAGEN Microbial Genomics Pro Suite allow accurate detection of antimicrobial resistance markers. Workflows 
and built-in access to public databases streamline data analysis and help users get started easily.

For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user 
manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN 
Technical Services or your local distributor.
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Background

Aim

Antimicrobial resistance poses a growing threat to public health as bacterial infections are becoming increasingly 
challenging to treat successfully. It primarily arises in one of three ways:

• Acquisition of anti-microbial resistance genes
• Accumulation of SNPs in genes encoding proteins targeted by antibiotics
• Insertion of a transposon inactivating or altering the expression of genes related to resistance

The spread of resistant bacteria and transmission of resistance mechanisms is alarming. Detection and surveillance is key 
to preventing and controling infection. 

Whole genome sequencing (WGS) has gained acceptance as a tool for the prediction of antimicrobial resistance patterns, 
because it offers a sensitive and reproducible alternative to antimicrobial susceptibility testing. The advantage over 
alternative approaches is the potential to reveal the full complement of resistance determinants, including resistance 
towards compounds that are not routinely tested. In addition, WGS data offer insight to the mechanisms by which 
antimicrobial resistance is transmitted.

Background

Carbapenem-resistant Enterobacteriaceae, such as 
K. pneumoniae, are a major public health threat with an 
associated economic burden due to the lack of efficient 
antibiotics, extensive transmission and high mortality rate. 
Carbapenem resistance arises from several mechanisms. One 
is the production of carbapenemases, which hydrolyse almost 
all beta-lactams. These are encoded by genes that reside on 
plasmids or transposons and are thus easily transferrable. 

Detection and tracking of plasmid-encoded resistance is 
difficult using short read technologies due to mobile 
elements and the repetitive nature of plasmids. Long read 
technologies have the potential to resolve and fully assemble 
genomes and accompanying plasmids.

Methods

Conlan et al. (2014) described carbapenem resistance in 
isolates of Enterobacteriaceae in a hospital setting. Using 
their data we demonstrate the assembly of single-molecule 
real-time sequencing (SMRT) reads to discriminate and 
resolve plasmid from chromosomally encoded resistance 
genes in K. pneumoniae.

Our aim is to demonstrate the application of WGS for the detection of resistance genes and resistance-causing mutations 
using tools from the QIAGEN Microbial Genomics Pro Suite. 

This poster shows the application of resistance detection in three different settings: Klebsiella pneumoniae, Actinobacillus 
pleuropneumoniae and Mycobacterium tuberculosis.
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Background

Antimicrobial resistance in animals destined for food 
production is of increasing concern. Because farm animals 
may serve as a reservoir from which antibiotic-resistant 
bacteria can spread to humans, there is increasing 
concern about antimicrobial resistance in this setting. 
A. pleuropneumoniae is a major contributor to swine 
respiratory disease, and antimicrobials are routinely used 
to limit disease severity and transmission. Resistance 
profiling is important for treatment decisions and surveillance 
purposes.

Methods

We combined the tools Trim Sequences, De Novo Assembly 
and Find Resistance in a custom-built workflow to streamline 
the data processing of the 94 isolates.

Detecting resistance genes

Using the data of Bossé et al. (2017), which describes antimicrobial resistance genes in 94 isolates of A. pleuropneumoniae, 
we demonstrate the detection of antimicrobial resistance genes from whole genome data.

Resistance makers were identified in 65 out of 94 screened isolates. Compared to the original study, we detected an 
additional nine resistance genes in seven isolates. 

Congruence between the detected antimicrobial resistance genes and the measured MIC values was high. In only nine 
(6%) cases did the detection of a resistance gene not correlate with a resistant phenotype. This corresponds to a positive 
predictive value of 89%. In three (2%) cases, we did not detect a resistance gene in a phenotypically resistant isolate.

Detecting resistance-causing variants

Using the data of Fiebig et al. (2017), which describes an outbreak of multi-drug-resistant TB, we demonstrate detection of 
resistance-causing variants in M. tuberculosis. By applying our optimized variant detector, we detected 123 resistance-cau-
sing variants the genomes of 13 analyzed isolates of M. tuberculosis. Of these variants, 75 were described in the original 
paper, while the remaining 48 were novel. 
Compared to the original study, our more sensitive approach to variant detection resulted in increased congruence between 
detected genotypic resistance and the independently obtained results of antimicrobial susceptibility testing, increasing the 
positive predictive value from 63% to 90%. 

Exploring and qualifying variants in 3D models

3D visualisation of variants can be an advantageous method for predicting and qualifying the effect of previously 
undescribed variants on antimicrobial susceptibility.
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Error correction of SMRT sequencing

The primary obstacles when using SMRT sequencing are the high rate of sequencing errors, the presence of chimeric reads 
and untrimmed adapters. However, if coverage is sufficiently high, reads can be corrected and assembled into high-quality 
contigs. Error-correction is part of the PacBio de Novo Assembly Pipeline found in the QIAGEN Microbial Genomics Pro 
Suite.

Detecting plasmid-encoded resistance genes

We detected carbapenemase-encoding genes in all five isolates analyzed. In four isolates, the gene was located on plasmids. 
In one isolate, it was chromosomally encoded.

Additional plasmid-encoded antimicrobial resistance mechanisms were 
detected in isolate KP30.

Isolate Plasmid type blaKPC gene 

KP29 IncN blaKPC-9

KP30 IncF blaKPC-2

KP31 Chromosomal blaKPC-2

KP32 IncF blaKPC-3

KP33 IncF blaKPC-3

 
Antimicrobial

 
Gene

 
Resistant by genotype

 
Resistant by phenotype

Congruence between 
genotype and phenotype

 
MIC breakpoint

Tetracycline tetB, tetH 54 56 96% ≥ 4 mg/l

Ampicillin blaROB-1 21 19 90% ≥ 4 mg/l

Sulfoxazole sul2 49 44 90% ≥ 256 mg/l

Trimthoprim dfrA14 16 15 94% ≥ 32 mg/l

 
Plasmid no.

Plasmid 
type

Resistance 
gene

Predicted antimicrobial 
resistance

1/3 IncFII(K) blaKPC-2 Beta-lactam resistance

1/3 IncFII(K) blaOXA-9 Beta-lactam resistance

2/3 IncFIB blaOXA-9 Beta-lactam resistance

3/3 IncN sul1 Sulphonamide resistance

3/3 IncN aadA1 Aminoglycoside resistance

3/3 IncN dfrA1 Trimethoprim resistance

ResFinder database

The Find Resistance tool uses the ResFinder database, a curated 
database of acquired resistance genes, to detect antimicrobial 
resistance (Zankari et al. 2012). The output is a table dosplaying 
detected resistance gene and supplementary data.
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DNA gyrase is the target for fluoroquinolones. DNA gyrase is involved in 
supercoiling of DNA, binding DNA and introducing double-stranded bre-
aks. Fluoroquinolones bind and lock the gyrase–DNA complex. Mutation of 
the target region of the gyrase alter the binding affinity for the drug, resul-
ting in resistance.

RNA polymerase is the target for rifamycin antimicrobials, which bind 
inside the RNA/DNA channel, physically blocking elongation. Antimicrobial 
resistance arises from amino acid alterations in the binding channel, 
decreasing the affinity for the drug. The lower panel shows the variant 
located in the drug-binding site.

DNA Gyrase with DNA and moxifloxacin RNA polymerase with with rifampicin

Wild-type model Wild-type model

Variant model – Ser431AsnVariant model – Ala90Val

* Antimicrobial susceptibility was not tested for all drugs for all isolates
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Custom variant database

Our database contained variants described by Coll et al. 
2014 (TBDreaM, MUBII-TB-DB and recent litterature), Miotto 
et al., 2014, and Allana et al. 2017.

The resulting custom database contained nearly 1500 variants 
in 31 loci conferring resistance towards 15 different anti-TB 
drugs.
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